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ANALYSIS OF THE BINARY EUCLIDEAN ALGORITHM

Richard P, Brent
Australian National University
and Carnegie-Mellon University

1. Introduction
The binary Euclidean algorithm of Silver and Taerzian

(62] and Stein {67 ] finds the greatest common divisor (GCD)

of two integers, using the arithmetic operations of subtrac-
tion and right shifting (i.e., division by 2). Unlike the

classical Euclidean algorithm, nc divisions are required.

Thus, an iteration of the binary algorithm is faster than an

iteration of the classical algorithm on many binary computers,

The classical algorithm has been exhaustively analyzed
from the time of Causs: see, for examp.e, Dixon [70, 71], :
Gauss [12], Heilbronn ([68], Khinchin (35a, 35b, 36], Kusmin ! ;
[28], Lévy [29], SzUsz ([61], Tonkov [74] and Wirsing [74]. 3
A good survey is given in Knuth [69]. The theory of the i
binary algorithm is much ess satisfactory, Knuth [69] ana-

SRR it

lyzed a '"lattice-point'' model which is, unfortunately, only

S

& crude and pessimistic approximation to the actual algorithm,

PR PR

In this paper we analyze a continuous model of the binary al-

gorithm and find the expected number of iterations. The re-

sults agree with the observed behavior of the algorithm much 3

better than those predicted by Knuth's "lattice-point" model. i
The binary Euclidean algorithm for finding the GCD of

positive integers u and v is given in Knuth [69, fec. 4.5.2,
Alg. B]. After steps Bl to B5 of the algorithm have been

performed once, the problem is reduced to that of finding

This research was supported in part by the National Science
Foundation under Grant M(CS75-222-55 and the Office of Naval
Research under ContractN00014-76-C-0370, NR 044-422,




the GCD of two odd integers. Thus, we assume here that u
and v are odd, and the algorithm is as follows,

RS Binary Algorithm
(n = 0;]
L1: t -~ Iu - v|;
if ¢t = 0 then return u as the GCD and halt;
L2: t « c/2;
if t is even then go to L2;
L3: [(nen+1;]
if u2vthenu ~ t else v «~ t;

go to L1,

The statements in square b}ackets are not essential. We say
that one "iteration" is one execution of step L3, so n counts
the number of iterations, To distinguish the different val-
ues taken by the variables u and v, we let u be the value of
u at iteration n, etc. Step L2 is executed twice as often as
step L3, on the average, but the L2 loop merely shifts t
right until it becomes odd, and this may be done efficiently
on & binary computer,

Let x, " min(un, vn)/max(un, Vn)’ and let Fn(x) be the
probability distribution function of X, We assume that Y,

apd v, are uniformly and independently distributed in (0, N)

(withothe constraint that they are odd), and consider the
continuous approximation obtained by letting N = «, In Sec-
tion 2 we derive a recurrence relation for the continuous
distributions Fn(x). )

In Section 3 we show that Fn(x) - an(x)lg(x) + Bn(x),
vhere qn(x) and Bn(x) are analytic and satisfy certain recur-

rence relations. An explicit expression for an(x) is given

'z .
Throughout this paper, 1g(x) denotes losz(x).
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in Section 4.

In Section 5 we consider the equivalent recurrence

fort f
fn(x) - Fr'l(x). We show that ”£n+2-fn+1“ < ”fnﬂ-fn” for a

certain norm., Numerical evidence, described in Section 7,

- Tfn for the probability density functions

suggests that convergence is rapid. Thus, it is likely that
ftl tends to a limiting density f_, though we have not been
able to prove this.

The expected number of iterations is asymptotically
K1g(N) for large N, and an expression for the constant K is
derived in Section 6. The theoretical value of K ~ 0,706
agrees with values obtained numerically for moderate values
of N. The numerical results are described in Section 7.

Finally, in Section 8 we consider another algorithm
which uses only shifts and subtractions, The algorithm uses
left shifts (i.e., multiplication by 2) instead of right
shifts, so we call it the left-shift binary Euclidean algo-
richm (LS algorithm for short). We show that the expected
number of iterations is slightly greater than for the (right-
shift) binary Euclidean algorithm. However, the LS algorithm
is worth considering for use on a computer with a "normalize"
instruction, as the left-shifting loop may be replaced by one
instruction. Either of the binary algorithms could be imple-
mented in hardware (or microprogrammed) with approximately
the same expense as integer division.

We consider only single-precision integer GCD computa-
tions here. For polynomial and multiple-precision integer
GCD algorithms, see Collins [74], Schonhage [71] and Knuth
(69].

2. The Recurrence for F

143

For notational simplicity we write u for u and u' for




Uiy etc. Also, there is no loss of generality in assuming
that u 2 v, The iteration terminates if u = v, so we assume

that u > v, Thus, x = v/u, t = Z-k(u»v), and
x' = min(t,v)/max(t,v), where k 2 1 is chosen so that t is an

odd integer.
Let P(E) denote the probability of an event E, By defi-
nition, Fn+l {(y) = P(x' <y), but x' = min(t/v, v/t), so

(2.1 Fn+.'()') = P(t/vsyvVvv/t<y)
(2.2) = P(t Svy Vv <ty),

It may be shown that, for K= 1,2,,..,

(2.3) 1lim P(k = K) = 27X,

N
Thus,
(2.4) Fn-H (y) = Zz'k P(Z'k(u-v) SvyVvvs Z.k(u-v)y)
k=1
(2.5) = ZZ“‘P(Z-k(l-x) SxyVxs 2-k(l-x)y).
k=1

Since : € (0,1), we have Z'k(l-x) < xy iff x 2 1/(1+2ky), and
x £2 (1-x)y iff x < 1/(1+2k/y). Also, assuming y € (0,1),
ve have 1/(1+425/y) < 1/(1+2%y). Thus, from (2.5),

(2.6) F_, () = , 27%01-2(1/(142%/y) s x s 1/(42*y)).
kel

Since x has distribution function Fn, this gives the interest-

ing recurrence relation

Ly e ok ol S
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' . Fo(y) =,

' (2.7

for n 20 and y € [0,1].
ecurrence for the classical algorithm

; The corresponding r

| A is

: 2.8) G_ .(x)= 5 (6. (1/k) - 6 (1/ (k+x)) ]
@. n+l L n n 2

k=1

. i

This was derived by Gauss (12}, who conjectured that

: i (2.9) 1im G_(x) = 1g(1+x),

n-e

P Ay W PR

which was proved by Kusmin [28]. Sharper results were later

obtained by Lévy [29] and sziisz [61]. Finally, Wirsing [(74]

proved that

o e e el

£
(2.10) G (x) = 1g(1+x) + 0(A"x(1-x))

where \ ~ 0,3036630029

e ——

as n - », uniformly for all x € [0,1],
] : i{s @ certain constant in (0,1).
4 : We conjecture that a similar result holds for Fn(x).

For a reason which will be clear later, the term x(1 -x) in

(2.10) must be replaced by x|

T BT W Sy R N

Conjecture 2.1
There exists Fw(x) = 1im Fn(x), and

n—e

(2.11) F (x) = F(x) + o(\"x|1n(x) |)

as n - ®, uniformly for all x € (0,1], where A is some




constant in (0,1).
The theoretical evidence for Conjecture
and some numerical evidence is given

2,1 is given in

the next three sections,

{n Section 7.
Differentiating (2.7), we ob

- L) 4E () R

fo(x) = ]

tain the recurrence

(2.12)

for the probability density functions f“(x) - F;(x),

x € (0,11, n 2 0. The recurrences (2.7) and (2.12) are

equivalent, but {n section 3 we prefer to work with (2.7) and
consider the form of Fn(x). Result: for fn(x) are easily de-

duced by differentiation.

3, The Distribution Functions F
143
The following theorem gives the form of Fn(x) for finite

n.

Theorem 3,1
For all n =2 0 and x € (0,11,

3.1) Fn(x) - an(X)la(X) * Bn(x).

vhere o_(x) and B (x) are analytic and regular in x| <1,
and an(o) - Bn(O) = 0, Also, ao(x) = (0 and

(3.2) 20 (2x) -0 +] <5+‘> - 3f (l)x. ‘

Proof
Define Do(x) = ( and

&
= " Fiald d L T Ty = i

' A ] i et 2

1 i s e s

T T
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=« 1
(3.3) D, (x) = 22 Fx\C+2k) .
k=1 .

We assume that
(3.4) Fm(x) - oh(x)lg(x) + qn(x).
(3.5) Dm(x) =1+ vh(X)ls(x) + q“(x).

(3.6) D (1/x) = ¢ (0)1g(x) + § (x),
and

(3.7) FNG-JQ =1+ 1 ()

for m < n, where am(x),...,qn(x) are analytic and regular for
lxl < 1, and vanish at x = 0, We shall prove the correspond-
ing result for m = n, so (3.1) will follow by induction. The
results (3.4) to (3.7) are trivially true for m = 0, so we
may assume n > 0,

From (2.7) and (3.3) we have

/
(3.8) Fn(x) 1+ Dn(l/x) - Dn(x),
so if an(x),...,¢n(x) are regular at x = 0 we must have

(3.9) an(x) - en(x) - Yn(x)
and

(3.10) B (x) =@ (x) - 6 (x).

From (3.3) we also have

(3.11) znn<2—l-) - orﬁ)- Fn_]G-f_;) .

80 in the same way we find that

S S

A S RN
v ey Tk i e
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X
(3.12) 2¢ (@) - € (0 = o, ({F)
and

(3.13) 2¢ (2x) + 2¢n(2x) - ¢n(x)

- Bn-1(1_:)-c) - an-l%b Le(it) .

By the inductive hypothesis, the right si:es of (3.12) and
(3.13) are analytic and regular at x = 0, Let the Taylor

expansion of am(x) be

(08 ) = e

3=

and similarly for Bm(x),...,T&n(x). By equating coefficients
we see that analytic solutions en(x) and ¢n(x) satisfying
(3.12) and (3.13) exist, and are given by

h|
g2
L : k j-1
RAPIRET ) éTI%", LoD e il
3
and
j=1 Ity .
T T /____1____ T Bl S 2'“1_“ (-1
* n,) PEALIR n,J kL] an/ 3=k
\l J+k j=1
+ Z‘ (-1 ﬁn_,. k-1 2
k=1

where § = 1,2,... . Thus, cn(x) and ¢n(x) are determined by
o _1(x) and B__,(x), and are analytic and regular in |x| < 1.
From (3,3) and (3.8),

R R

[ ——
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1 A, g 4 2,
RN NOCRIEE Fn_]<1+2y> +3 Fn_](z_'_y

= -;. D, (2y) + ';- Dn(s) i

Substituting y = 1/(1+x) gives

1 1
(3.18) Fn(Ti-;)- 1-3 n-'l(; ) 2 Faa1 éh

1 )
-3 D 1+> + D (2+2x).

By the inductive hypothesis,

(3.19) rn_(;—@ - ornd(;—")’)l(;"’)) + an_(;—+>§.
2x \ =2x \\

so substituting y .<3(3+x)/ and 3(3+2x /gives power series

14+x 1
for Fn-l( and F Q+2’> respectively. Also,

3+x n-l

1+x 1+x
(3.20) D '|+x) e (1 >< >+¢<
and
(3.21) D (2420 = - (7o) 1824200 + ¢nQT‘2;>

1
Thus, Fn 1+x> =1+ 'ﬂn(x),

where ‘nn(x) is analytic and regular in |x| < 1,
It remains to consider yn(x) and 5n(x). From (3.3),

(3.22) 20(3) - D () =141 (0,

80

.29 (3) - v (x) = 0

BT P— ——
e b ol s = e ke T’ L e s
e i, adcdiniicienlitrtani i Lo " G T e . e L




10

and

X X
(3.24) 25(3) - 8, (x) - 2Y(5) =N, (x).
Thus, we have the analytic solutions

(3.25) Yn(x) - yn"x = - nn_]’]x - fnm](I)x

and

1
(3.26) &, .= —_1'-"-) Toet, 3

for § 22, The constant Gn
lations Bn.] =g

1 may be determined from the re-
14

- § and
n

n,l 1

’
(3.27) Fr(%) AU % Fn-(%) B %Fn-l(;—)*‘ % Dn(z)’
obtained from (3,10) and (3.17) respectively.

We have now proved (3.4) to (3.7) for m = n, so the
first part of the theorem follows by induction, (3.2) fol-
lows easily from (3.9), (3.12) aad (3.25), so tke proof is
complete.

It 1s interesting to obtain an explicit formula for
F](x). First we need a lemma,

Lemma 3,1
If

- -}
(3.28) D () = ;) 27/ (142,

k=1
then : L

x  x .Y (x
(3.29) Dy(x) = xlgx + 1 + 7 - e /) =
jog 21

for 0 < x < 2, and

ik irhoa Uav Rt Lo,
L

e et

i c

s
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il
(.30 b (/0 = - ) L
gy 27

for |x| < 2.

Proof

From (3.5) and (3.6), we have

(3.31) D] (x) =1 + Y (x)1g(x) + s](x)
and

(3.32) D, (1/x) = ¢, (x)1g(x) + B, ().

Since ag (x) = 0 and B_(x) = x, (3.15) gives N (x) = 0, and
(3.16) gives ;= (- nI /@Iy, mis satiblisben, 800,

From (3. 25), vy (x) = x. Also, since T(x) = 1/(14x),
(3.26) gives

= (-n@

(3.33) 6,

for § 22, Thus

@®
o
(3.34) D1(x) - xlgx + 1 + 61,1x ar 9 =y -

The series in (3.34) converges for |x| < 1. Subtracting and

adding T l+x 2: (-x)j gives

j=2
(3.35) D, (0 = xlgx + 1+ 8 yx -3 )
L A

where the last series converges for le < 2, By analytic

continuation, (3.35) holds for 0 < x < 2, The constant

PR TTTTEREE TRy T Ty e

b A R T YR
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61 " % may be determined by equating (3.30) and (3.35) with
»
x = 1, Thus, (3.29) follows.

Corollary 3.2

' R
- x(5x-1) (-x)- 2
F'l (x) -xlg(x) + 6(14x) + 32 7-1 7+ .
e T-0ETD

Proof
This follows from (3.8) and Lemma 3.1,

In principle we could obtain Fz(x), F3(x), etc. in the
same way as F](x). However, the details become very compli-
cated, The situation is similar for the classical algorithm:
see Knuth [69].

orollary 3,3
For all n = 0 and some x € [0,1], Fn+](x) # Fn(x).

Proof
Suppose, by way of contraciction, that Fn+1(k) - Fn(x)
for all x € [0,1]. From Corollary 3.2, n $# 0, From Theorem

3615 an+](x) - an(x). Thus, from (3.2),

(3.36) o () - 3 fq Dx = o F) - 3E,(x

for |x| <1,
Substituting y = x/(14+x) we obtain

(3.37) o () = o, ;) = 3E () - £ _,00)y/(-y)

g 1
for |y| < 7+ By analytic continuation, (3.37) holds for
lyl < 1, However, from (3.2) it follows that qn(y) and

\ . -
an_](y/ ar¢ regular at y = 1, so we must have fn(1) - fn-l(l)’




S
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and thus an(y) - ah_](y). Continuing in this way, we finally
obtain al(x) = ao(x), which contradicts Corollary 3,2

(q](x) - x, ao(x) = 0), Thus, the original assumption was
false,and F__, (x) P F_(x) for some x € (0,1].

4, Solution of the Recurrence for o

In this section we solve the recurrence (3.2) explicitly.
The method used here can obviously be generalized., However,
we have not been able to solve the recurrence for Bn(x)
analytically.

Define p(0) = 0

p(2n) = p(n),

and p(2mtl) = p(n) - 1,
Thus, p(n) is the number of ome-bits in the binary representa-

tion of n 2 0,

Theorem 4,1

Supnose ao(x) = (0 and

X
@) 20,20 - o ) = a +x> te %

for n 2 0, where °1’°2"" are constants, o ™ . = ,,,.=0,

and an+1(x) is analytic and regular at x = 0. Then

k

® 2 <]
x U k% Sp.
S
k=0 j-O jx

for all n = 0 and all x £ (-, -1].

Note
(4.1) is the same as (3,2) if €y ™ -3fn(l) forn 2 0,
Thus, (4.2) gives an explicit solution of (3.2) in terms of

fo(1). fl(l)pnoo,fn-] (1)0
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Proof of Theorem 4,1

The result is true for n = 0, and the analytic solution
of (4.,1) which is regular at x = 0 is clearly unique, Thus,
it i{s sufficient to verify that 1if an(x) and R (x) are de-
fined by (4.2) then (4.1) holds. From (4.2) we have

X
20,9 (2%) = o, () - “n@ﬁ)

“ 2k+l_]

A ¢ -
- 2k+ X
k-1  §=0 J

- Cn+1x,

since p(2k+j) =p(j) +1 for 0 < j < Zk.

follows.

Thus, the result

Corollary 4,1
Suppose lim fn(l) = fm(l) exists, Then

n-seo
lim an(x) = a(x) exists, and
=
-3:_(1)
(4.3) a (x) = —— ¢(x),

where

it it b ko T T e o
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o 2"-1
x U =k } 1
(4.4) y(x) = 7 L 2 2‘ *,
ks0 gm0 2 HIX

1s analytic, regular for x ¢ (-, =1], and satisfius
(4.5) 24(2x) = y(x) + *(1_:-{) + 2x,

Also, #(x) = Z (-l)j"vjxj, vhere y; = 1 and

3=
n=-1

] n-1
(4.6) §y =~ Z *k(k-1>
"oty o

‘ o 0=l
wn =k L ()
k=0

for n 22, [Here '-0‘-’1"" are Bernoulli numbers, ]

Proof

Let d_ = ::: |fm(1) - £,(1)], so0 dy 24, = ... and
lim dn = 0, For convenience, let d-l - d_z " ,..= 0,

n-e
From (4.2), . z“
(4.8) |°'n+l(x) - a (x)] <'3-L;f'|' Z 2k >. ﬁﬂu.
o : k=0 j=0

Thus, since p(j) sk for j < Zk, we have
«
('\

4.9) o, 0-a,0] = ajz’ﬂ-

kﬁ‘o §=0 |2k+jx|
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For sinplicity we assume x is real and positive, though
a similar proof goes through for complex x é (-», =1]. From
(4.9) we have

3 \ .=k
@10) o 00 - a ) s ® ) 27

k=0

Given ¢ > 0, there exists m such that dln s e, Thus,
for n 2 max(m, m+lg(do/e)), ve have

@« n-m @

Vo ek I oy -k

i 2 dn-k‘ & 2 dn-k+ L 2 dn-k
k=0 k=0 k=n-m+]

< 2¢ + 2“““40 < 3¢

Thus, lim a_(x) exists, and the limit is given by (4.3) and
nee °
(4.4).
The recurrence (4.,5) may be verified as in the proof of
Theorem 4.1, and equating coefficients gives (4.6). Also,
substituting

@I =) 20"
2 +)x n=0

in (4.4) and equating coefficients gives (for n > 1)

. 21
@a2) § =g ) 27k@D) gl
kel 3=

so (4.7) follows from ex, 1,2,11,2,4 of Knuth [68].

Corollary 4,2
Suppose lim fn(l) = £_(1) exists, and that

n-‘




e T S S T Yy T T

(4.13) £ (1) = £,(0) + o(\™

a4s n - o, where \ € (‘;-, 1. Then

(4.14) an(X) = g, (x) + 0(A\"x)

and

“.15) ol (0 = al(x + 0"
as n - =, uniformly for all x € (0,1].

Proof
From (4.10),

oy @ = a (0| = 00™) ) @07,
k=0

and 2\ > 1, so the last series is convergent. The proof of
(4.15) is similar,

5. Some Convergence Results

We define a linear operator T, mapping the Banach space

L,(O,l) into itself, by

o 2 : 2
Y 1 X 1 1

(5.1) Tf(x) = + f 9
kf:l Qk‘P’) (<2k+§> Q+2kx> <L+2k:)

Thus, (2.12) is

(5.2) f£rl " Tfn.
We write f 2 0 1f f(x) 2 0 for almost all x € [0,1] (in
the sense of Lebesgue measure). Note that T is a positive

operator, i.,e,, Tf 2 0 whenaver £ 2 0,
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For £ € L,(0,1), ||| ts the norm of £, 1.0y

ell = €00 ox.

The norm of & linear operator L 1is defined by

Ll = sup{lell 1€ € Ly 010 llell = 11

Theorem 5.1
For all f € L1(0,1),

.9 el s lelie

Also, if £ 2 0 then
(s.4) |mfll = IH[R

Proof
From (5.1),

5.5) |etll s <
VAR
' ‘Yan“,) f

with the change of variables y * _E—_
27+x

in the second, this gives

1+2kx

in the first integral,

and ¥y =
142 x

1

(-] ——

k
el < 220" splay + [ g0y

1
e 1+2k

- Lz J|f(y>|dy- llell .
k=1
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This proves (5.3)., To prove (5.4), we merely note that all
the inequalities in the proof of (5.3) become equalities 1if

20,

Corollary 5,1
Il = 1.

Proof

Th!s 1s immediate from Theorem 5.1 and the definition of
e l.

We would like to prove that the iteratiou (5.2) con-
verges to a fixed-point of T, Unfortunately, the theorems of
Schauder (see Simmons [63]) and Krein and Rutman [43] are not
applicable, because {f ¢ L](O,l)llkll- 1} is not compact.
Thus, we have only been able to prove the weaker result given

in Corollary 5.2.

Theorem 5,2
Suppose *hat f is continuous on (0,1), changes sign at

least once, does not vanish on any finite subinterval of
(0,1), and there exists ¢ > 0 such that £(x) = 0 has no soln-

tion x € (0,e]. Then

(5.6) [fre| < [ie]

Proof

Suppose, by way of contradiction, that lhf” =|l]l. Thus,
all i{nequalities in the proof of Theorem 5.1 must be equali-
ties, Hence, for all k 2 1 and all x € (0,1), we have

(5.7) f({ﬁ)f(—lﬁ) > 0.
+ +

By assumption, f(x) changes sign at some point ¢ € (0,1).
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There exists K 2 1 such that ¢ > —ljz . Suppose k 2 K, so

142°
> =L . Then there exists € (0,1) satisfying
E 1+2k ®

} P= 1/(1+2kxk). Thus, from (5.7), f must also change sign
at y, = xk/(2k+xk) < 2°%, Ssince k may be arbitrarily large,

this contradicts the hypotheses of the theorem. Thus, (5.6)

i must hold.

| Corollary 5,2

§ Let: en - fn+l - fn. Then

(5.8 [lepyqll < llell

for all n 2 0,

Proof

From (5.2), e+
satisfies the conditions of Theorem 5,2, From Theorem 3.1,
e (x) = & (01g(x) + B _(x), vhere & (x) and B (x) are analyt-

- Ten, so we have only to show that e

lc.  Also, from Corollary 3.3, en(x) does not vanish iden-

tically. Thus, en(x) is continuous on (0,1) and does not

vanish on any finite subinterval of (0,1).

Since

1 1 1
(5.9) J’o e (x)dx = j‘o £, ®)dx - j‘o £ (x)dx = 0

but lkn||> 0, en(x) must change sign at least once on (0,1).

Finally, from Theorem 3.1 we see that en(x) has constant

sign on (0,¢], for some sutfficiently small € > 0. Thus, the

conditions of Theorem 5.2 are satisfied, and the result fol-

lows,
From numerical evidence we conjecture that
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* (5.10) o, 1l = Alle Il

for some A\ € (0,1), Unfortunately, Corollary 5.2 does not
imply (5.10), If (5.10) 1is true then (fn) is a Cauchy se-
cuence and the limit fQ exists,

i Corollary 5,3
| For all n 2 20, and all x € [0,1],

(5.11) |F () = F (] s e ”<1o

Proof
|F ](x) F (x)l - lj' e (y)dyls ”e [|, but numerical re-
sults (described in Section 7) show that |k20||< 10 so

- the result follows from Corollary 5.2.
| From now on we assume that the limiting distribution

Fa(x) exists, In view of Corollary 5.3, we may use on(x)

instead of Fw(x) for all practical purposes.

6. Expected Number of Iterations
We use the notation of Section 2. Let s = u+v and
s’ = u'+v', Note that

(6.1) s/s' = (utv)/(u'w') = 2“[“%}— .
1+(27=1)x

Since k 2 1, s/s' 2 2, 80 the maximum number of iterations is
at most |1g8(N)]. The example u = 2™-1, v = 1 shows that this
bound is attainable, For another example see Knuth [69],
exs, 4,5.2,27-28,

Lat E, be the expected value of In(s/s'). From (6.1),

k
22« =1 2000 Foe
x 0 2

14(2

k

-1)x
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L =

P =t k

: 3 -k[ 1(1 2*_1 ) ]
‘ - 2 |1ln2 - - F (x)dx

’ k‘:1 oV e/ @ ;

80

e g T

1
(6.2) E_=1ln2 + j‘o $OOF_(x)dx,

where

'. C k

\ -
:. (6.3) 8(x) = L[ = ]'2(;(+x) '
S=1H(2 - 1)x

n-1
The expected value of 1n(50/sn) is Z Ej' Thus, assum-

=0

ing the existence of E,= lim E_, the expected number of

joo
iterations for odd integers ugs Vo < N {s asymptotically

K 1g(n) as N = =, where

(6.4) K = 1n(2)/E_.

Approximatirg E_ by E, and evaluating the integral in

40
(6.2) numericall: gives

(6.5) K ~0,705971246102,

In the next section we give some numerical evidence which
suggests that the expected number of iterations is

K 1g(n) + 0(1). This 1s not surprising if Conjecture 2,1
holds, for then En =E_+ 0(1;‘1).

7. Numerical Results

The recurrence relation (2.7) was solved numerically by a
three different methods, All computations were performed on 1
a Univac 1108 using double-precision (60-bit fraction), and 1
the numerical results given by the different nethods agreed

to the accuracy expected,

3
-
4

3
P

F

d

3
E
3
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A, The Recursive Method

This is the most obvious method. Fn(x) is evaluated re-

cursively, using the recurrence (2.7) with the infinite sums
truncated after the terms become negligible. The method is
only useful for small n, as the computation time increases

exponentially with n,

B. The Discretization Method

1f Fn(x) is known =t a finite set of points, say
X, - 0L X, < X, < see < x = 1, then we can use the recur-
rence (2.7) to approximate Fn+](x) at the same set of points,
using linear or quadratic interpolation to approximate Fn(x)

3

a uniform grid, i.e.,, x

at poiuts x f x, for j s m. Computations were performed with
- jh, where h = 1/m. (It might be
more efficient to use & non-uniform grid, because of the log-
arithmic singularity of F;(x) at the origin.) Using several
different h, we found that the error in the computed value

of Fn(x) was 0(2), for fixed n and x, The accuracy could be
improved to O(h™) or better by using Richardson extrapolation,
For example, using m = 1920, 3840 and 7680, we obtained Fn(x)

to eight decimal places (8D) for n < 20.

C. The Power Series Method

In Section 3 we showed that Fn(x) = an(x)lg(x) + Bn(x),

vhere the coefficients o, and B

in the power series
® | N P

]

] “ ) :
an(x) - 2: an,jx and Bn(x) ‘s an,jx satisfy certain re
j-O J-O
currence relations., Thus, it is possible to compute the co=-

)3 #nd Bn’j

power series, To avoid numerical difficulties it is essential

efficients o by working with suitably truncated

to stay well within the radius of convergence of each series,

which ensures that the truncated terms are negligible. This
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is always possible, With the series truncated after the
first 100 terms, we computed Fn(x) to 12D, and the results
agreed with those computed by the discretization method, The
value K = 0,705971246102 should be correctly rounded to 12D,
Table 7,1 gives Fn(x) to 4D for x = 0,1(0,1)0,9 and
n=1(1)5, It is clear that the distributions F (x) converge
rapidly, Table 7.2 gives the limit F (x) to IOD for various
x. The computed values of Fn(x) differ by less than 10~ L
for all n 2 20,
Table 7.3 gives the coefficients « -’ B“
the pover series o (x), B (x), and € (x) = F (1+x), for
jJ €20, Note that the coefficients alternate in sign, and

and & j

their absolute values decrease monotonically, for j 2 2,

The values given in Tables 7.2 and 7.3 confirm several

identities which may be derived theoretically, for example:

T3 + F D) = 26, D) + 27, + F 3 + 3,

3§¢’1 - -6§¢'2 - -20%],
and
188, 5 + 3B,y + (104 3/1n(2))%’] -0,

Table 7,1: Values of Fn(x) to 4D
FI(x) Fz(x) F3(x) Fa(x) Fs(x)

0.3329 0.28717 0,2772 0,2753 0,2750
0.4967 0,4478 0,4370 0,4349 0,4346
0.6111  0.5666 0,5567 0,5548 0,5544 i
0.6989 0.6611 0,6526 0.6510 0,6507 \
0.7699 0,739 0,7325 0,7312 0,7310 }
0.8294 0.8060 0,8007 0,7997 0.7995 |
0.8805 0,8637 0.,8599 0.8592 0.8590 {
0.9251 0.9144 0.,9120 0,9115 0.9114 3
0,9646 0.9595 0,958 0,9581 0.9581 i

x
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; Table 7,2: Values of F_(x) to 10D
x F_(x) x F_(x)
! 0.1 0.2750116116 1/3 0.5886652481
{ 0.2 0,4345648990 2/3 0.8400418266
0.3 0.5544181563 1/4 0.4981238639
0.4 0.6507109442 3/4 0.8860223000
0.5 0.7309648721 1/6 0.3470894190 f
0.6 0.7994844345 5/6 0.9275771715 :
0.7 0.8590163978 112 0.2420627866 1
0.8 0.9114387997 5/12 0.6650572783 i
0.9 0.9580992159 7/12 0.7887496125 I
1.0 1.,0000000000 11/12 €.9653900331 ]
]
Table 7.3: The C F
oefficients ao’j, aa’j and gm’j
J a”) j awn 1 g“xi ':
0 0.000000 0.000000 1.000000 3
1 -0,596884 0.765619 0.397923 e
2 0.099481 0.347519  -0,198961 7
3 -0,056846  -0,191979 0.111631 ;
4 0.035529 0.138115 -0,067966 I
5 -0.023839  -0,105276 0.044193 !
6 0.016962 0,082567 -0.030365 |
7 -0,012663  -0,066260 0.021861
8 0.009823 0.054283 -0.016369
9 -0.007853  -0,045299 0.012666
10 0.006428 0.038417 -0,010072
n -0.005361 -0.033033 0.00819
12 0.004540 0.028739 -0,006795 ﬂ
13 -0.003893  -0,025255 0.005725 ;
14 0.003375 0.022384 -0,004890 g
15 -0.002953  -0,019989 0.0046225 j
16 0.002605 0.017966 -0.003688 §
17 -0.,002315 -0,016242 0.003247 !
18 0.002071 0.014760 -0,002881 !
19 -0.001864  -0,013476 0.002574 ’
20 0.001686 0.012357 -0,002313 )

For integers u and v, let b(u,v) be the number of itera-

tions required by the binary Euclidean algorithm as described
in Section 1, Let
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B = ) b(w,v)

O<v<u<N
u,v odd

B(v) = 2B(N) /(WN/2)(W8/2] - ).

Thus,ﬂ?(N) is the average number of iterations required for

distinct, odd u and v less than N,

B(N) and A(N) =BN) -B(n/2) for N = 2
From the results of Sections 6 and 7, we expect A(N) to con-
verge to K = 0,705971246,.,. as N = o,
given in Table 7.4 satisfy 0 < K - A(N) < 2 1g(N)/N, and give

the

3 .4
.2,000,2

15

Table 7.4 gives B(N),

In fact, the values

approximation
AB(N) ~ Klg(N) - 0,93,
Table 7,4: Exact Counts for Small N (algorithm RS)
N B(N) 1)) _A(N)

2, 10 1.6667 0.6667
25 60 2,1429 0.4762
26 341 2.8417 0.6988
27 1701 3,429 0.5878
28 8254 4,0942 0.6648
29 38692 4,7603 0.6661
210 178046 5.4548 0.,6945
2]1 804192 6.1475 0.6927
212 3586234 6.8469 0.699%
2]3 15822368 7.5484 0.7015
2]4 69216057 8.2532 0.7048
215 300540247 8.9579 0.7047
2'7 1296893644 9.6632 0,7053

Other "Binary' Euclidean Algorithms

As well as the algorithm described above, there are

several other "binary" variants of the Euclidean algorithm,

¢ '
o daal




For example, Harris {70] suggested an algorithm which uses
both division and right shifting, and requires less itera-
tions than the classical algorithm, on the average. Yao and
Knuth {75] considered the "subtractive" Euclidean algorithm,
which requires neither shifts nor divisions. In this section
we analyze the "left-shift" algorithm (LS) mentioned at the
end of Section 1, For positive integers u and v, even or
odd, the algorithm is as follows.

LS Binary Algorithm
L0: 1if u < v then interchange u and v;

"if u = v or v = 0 then return u as the GCD and halt;
t & v;

while 2t < u do t « 2¢t;

Ll: u*u - t;

go to 10.

The interchanging of u and v can be avoided by duplicat-
ing some of the code, The ''while" loop merely shifts t left
until its leading one bit is in the same positioﬂ as that of
u, or one position to the right of it, This may be done
with a floating-point '"normalize" instruction, possibly fol-
lowed by one right shift.

We say that an iteration is one execution of stup LI,
The expected number of iterations is given by the following

theorenm,

Theorem 8,1
If integers u, v are chosen uniformly and independently

in (0,N], the expected number of iterations of algorithm LS
is asymptotically Kzlg(N) as N - o, wvhere

(8.1) K = 12(1n(2)/m? ¢ ~ 0.875837091,

T I —
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and p(j) is defined in Section &,

Proof
We shall only sketch the proof. Suppose u> v> 0 and

we perform one iteration of the classical Euclidean algo-

rithm, {.e.,, we find q = Lp/vj, r = u-qv, set u + v and

v « r., Then the new values of u and v would be obtained

after exactly p(q) iterations of algorithm LS, [Let

p(Q)
q-= z 2
3=

where my > my > ... > mp(q) 20, If1 <j <p(q), then the
j=th execution of step LI 8f algorithm LS replaces the cur-
rent u by u-t, where t = 2 jv.]

Let the regular continued fraction for u/v Be

(8.3) u/v = q, + l/q1 +1/ .o + l/qk,
so the classical algorithm requires k+l iteraﬁions. From

the above discussion, algorithm LS requires E:p(qj) itera-
j=0
tions (actually one less if q "= 1, because of our test
"Ifu=v.,..").
Let EZ(N) be the expected number of iterations for
algorithm LS, and Ec(N) be the expected number for the class-

ical algorithm. Thus,
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(8.4) lim E,(N)/E (W) = Lim lim p(q)),
Nes n=® N-e

vhere B(qn) {s the expected value of p(qn). From results
like those of Khinchin [35a, 35b, 361,

(8.5) 1lim lim E(qn) = e,

n=® N—-=»

+D2)  from (2.9).] Also,

where ¢ is given by (8.2). [Iptuitively, the probability
(D
that q, = q is about 18[j(j+2)

(8.6) E (M) ~ 12(1n(2) /m21g(N)

‘ as N » o (see Knuth [69]). Thus, the result follows from
. (8.4).
| The constant ¢ is difficult to evaluate numerically

from (8.2). The following lemma is much better for numerical

purposes, Using (8.8), we found

(8.7) c ~ 1.49930818096

very easily.

Lemma 8.1
If ¢ is defined by (8.2), then

(8.8) c=2+ 2‘ 1g7(1+279)
3=
. 1 T (1e)
(8.9 =2-7H|Y" L




® j :{
In(m) = y+ 2 Z ﬁ;})_gﬂ)- ) ?
yop 200 a |

1

(8,10) =1+ 21n(2)

|
Here, y = 0.5772... is Euler's constant, T'(x) is the Gamma |
{
function, and ((j) is the Riemann Zeta function, !

§

Sketch of Proof
Splitting the sum in (8.2) into odd and even indices,

and using p(2j+1) = p(J) + 1 and p(23) = p(Jj), gives

141/ (2 i+1 \ 14+1/(2
=0 J=1
Continuing the splitting process eventually gives
® k 1
= 141/ 25 (3+))
(80]2) c= Z z 18 m & .
kel gm0 LM/ @G

From Stirling's approximation,

(8.13) ﬁ; [4x/(3+y) ] ~ 2’ T(y) /T (x+y)
j-

as n ~ =, so (8.,12) gives

; r‘(;—)r(wz"‘)
8.14) c= ) gl =] -
kel Fge2

From the well-known identity

(8.1%) TGTee = TanT2' ™

Biges o e amiara Lo biondalo gt gt b L SR G et
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with x = 7 + 2 k, it is easy to show that
]
{ 1, 1 ek
(8.16) ) 1g(r(p/rG+2™91 = 2,
ka1

so (8,.8) follows from (8.14),
Suppose |x| <1, nz1, We have

n-1
(8.17) 1nr(l4x) = in“(rﬁ-x) - Z 1n(1+x/k)
k=1

clar(n)
n_-1
(8.18) = lin[xln(n) - ) In(Hx/k)
T k=1
(8.19) -t ) (0 Lgil .

3=2

(8.9) follows from (8.8) by putting x = 2 % in (8.19) and
summing over k = 1, 2, ,,. ., The proof of (8,10) is similar,

Numerical Results for Algorithm LS

For integers u and v, let b2 (u,v) be the number of itera-

tions required by algorithm LS,

(8.20) B, (W) = 2, b, (u,v),

O<v<u <N

@20 G = 2,00/058-n)1,

and
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(8.22) A, (M) =B, (M) - &, N/2),
3 12

’..l’z

2
Table 8.1 gives BZ(N),43§(N) and A, (N) for N =27, 2
(compare Table 7.4 for algorithm RS).

Table 8,1: Exact Counts for Small N (algorithm LS)

N B, (N) B9 (N) % (N)
23 8  1.3333 0.3333
24 55 1.9643 0.6310
25 305 2.5417 0,5774
26 1625 3.2762 0.,7345
27 8135 4,0352 0.7590
28 39282 4,8329 0,7977
29 184670 5.6578 0.8249
210 851566 6.5096 0.8519
2]1 3860856 7.3712 0.8615
2,2 17268497 8.2383 0.8671
2 76392955 9.1090 0,.8207

From Theorem 8.1, we expect

(8.23) lim AZ(N) - l(2 ~ 0,875837,
N-oo

and the numerical results support this prediction,

Summary
Table 8.2 summarizes the average and worst-case behavior

of four algorithms: the classical algorithm, the RS and LS
binary algorithms, and the subtractive algorithm of Yao and
Knuth [75]. The subtractive algorithm is of theoretical
interest only. The choice of which of the other three algo-
rithms is to be preferred depends on the instruction set and

instruction timing of the machine used,
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% Table 8,2: Comparison of Various Euclidean GCD Algorithms
! Algorithm Average iCeracions* Max imum lterations*
Classical 0.58421g(N) 1,4404ig(N)
RS Binary 0.70601g(N) 1g(N)
LS Binary 0.87581g(N) 1.44041g(N)
Subtractive 0.2921(1g(M) 2 N
*

Notes: 1. Lower order terms are neglected (in most cases
they are 0(1)).

2, An {iteration of one algorithm (e.g., the binary
algorithm) may take less time than an iteration
of another algorithm (e.g., the classical algo-
richm).
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